

Digesting React
Learn how to build web applications with React

Nathan Sebhastian

Copyright © 2020 Nathan Sebhastian. All rights reserved.

While I did my best to take every precaution in the preparation of this book, I assume no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

Please make your own best judgement, for things might change in the future after this publication

2

Digesting React v1.0.0

Foreword

The year 2018 has been a great year for React. It wins the hearts of fron-

tend developers and it also wins the job marketplace1.

And React team itself doesn’t seem to content with its position, with the

new hooks feature being released as early as February 6th 2019. React is

a revolutionary and very solid library for developing scalable and main-

tainable frontend, and it has proven track record from popular tech com-

panies like AirBnB2 and Netflix3.

(I don’t need to mention Facebook4 now, do I?)

So yes, React is definitely at the top of the requirement list for many nerd

jobs. And although learning React iself isn’t that hard, the way to mas-

ter React is complex and requires you to have a deep familiarity with its

features.

For example, the hooks feature has been a great addition to React that

opens up new possibilites of writing the code, but I think it also has made

developers who want to learn React gets confused. Before hooks, using a

JavaScript class is the only way to write a component that has business

1June 2018 Hacker News Hiring Trends
2Rearchitecting Airbnb’s Frontend
3Netflix Likes React
4Does Facebook use React on Facebook.com?

Nathan Sebhastian 3

https://www.hntrends.com/2018/jun-no-signs-of-slowing-for-react.html?compare1=React&compare2=AngularJS&compare3=Angular+2&compare4=Vue
https://medium.com/airbnb-engineering/rearchitecting-airbnbs-frontend-5e213efc24d2
https://medium.com/netflix-techblog/netflix-likes-react-509675426db
https://www.reddit.com/r/reactjs/comments/4edsvi/does_facebook_use_react_on_facebookcom

Digesting React v1.0.0

logic applied to it. Now with hooks, you can use both JavaScript class

and function to write your component. Which one should you use?

Outside of React itself, the React ecosystem is filled with many libraries

that strive to achieve the same goals, and they are all equally good. For

example, you can use Redux to manage complex React state. But should

you use Redux? What about the Context API? Wait, there’s also Over-

mind and Recoil library. Which one should you use?

If you don’t know what I’m talking about, then this book will be perfect

for you. I will help you to learn both React and how to start navigating

its huge ecosystem of tools and libraries in a pace that you can absorb.

To experience the full benefit of this guide, you need to have the following

requirements:

• Know basic website technology like HTML and CSS

• You’re familiar with basic JavaScript knowledge (variables, func-

tions, conditionals)

• Familiar with code editors like VSCode and SublimeText

Finally, welcome to Digesting React where you will learn how to build web

applications with React without getting exhausted.

Nathan Sebhastian 4

Digesting React v1.0.0

Introduction to React

React is a very popular JavaScript front-end library that has received lots

of love from developers around the world for its simplicity and fast per-

formance.

React was initially developed by Facebook as a solution to front end prob-

lems they are facing:

• DOM manipulation is an expensive operation and should be mini-

mized

• No library specialized in handling front-end library at the time

(there is Angular, but it’s an ENTIRE framework.)

• Using a lot of jQuery is causing spaghetti code

Why developers love React? As a software developer myself, I can think

of a few reasons why I love it:

It’s minimalist

React takes care of only ONE thing: the user interface and how it changes

according to the data you feed into it. You can think of React as the “V”

in an MVC framework.

Nathan Sebhastian 5

Digesting React v1.0.0

It has small learning curve

The core concepts of React are easy to learn, and you don’t need months

or 40 hours of video lectures to learn about them.

It’s unopinionated

React can be integrated with lots of different technologies. On the

front-end, you can use different libraries to handle Ajax calls (Axios,

Superagent, or just plain old Fetch.) On the back-end, You can use

PHP/Rails/Go/Python or whatever language you prefer.

Strong community support

To enhance React’s capabilities, open source contributors have build an

amazing ecosystem of libraries that enables us to make even more power-

ful application. But most open source libraries for React is optional. You

don’t need to learn them until after you master React fundamentals.

The bottom line is that with a small learning curve, React gives you in-

credible power in making your UI flexible, reusable and spaghetti-

free.

Nathan Sebhastian 6

Digesting React v1.0.0

Setting up your local computer environment

This section will help you install all the necessary tools to start writing

React application in your computer. While you can use browser-based

code editor like Code Sandbox and Codepen, I’d still recommend you to

simply install things into your computer so that you won’t be interrupted

by bad internet connection or any downtime.

You will most likely use a local computer when working on a real project

anyway, so let’s do that now to make yourself comfortable. You can skip

this section if you already have these tools installed:

• Code editor (I recommend VSCode)

• Node.js

• Create React App

• React Developer Tools

Installing VSCode

I assume you already know the benefits of using a code editor over a regu-

lar one, so I’m going to recommend you to install VSCode if you haven’t.

VSCode is a free code editor that’s really popular with developers today.

Head over to VSCode website and download the version for your system.

Nathan Sebhastian 7

https://codesandbox.io/
https://codepen.io/
https://code.visualstudio.com/

Digesting React v1.0.0

Installing Node.js

To be able to create React projects on your computer, you need to install

Node.js. Head over to its website at nodejs.org and download the most

recent LTS version for your computer:

Figure 1: Node.js website

Once installed, please open your command line and type in the following

command:

Nathan Sebhastian 8

https://nodejs.org/en/

Digesting React v1.0.0

node --version && npm --version

You’ll see the versions of Node and NPM that has been installed into your

computer. Now you’re ready to create React applications.

Installing Create React App

In order to make React run properly without any errors, it needs a lot of

configurations. Yes, you need to configure Babel and Webpack at mini-

mum so that React can run when you hit the browser. Yet configurations

should not stand in the way of getting started, and that’s why Facebook

created a utility tool called Create React App. It saves you from having

to learn about configurations, and how to setup those configurations prop-

erly for React.

The only requirement to use this tool is that you have Node and NPM

installed, so let’s get one in your local computer by opening the Terminal

and run the command:

npx create-react-app my-first-react-app

Once it’s finished, navigate to the created directory and run the app using

these commands:

Nathan Sebhastian 9

https://create-react-app.dev/

Digesting React v1.0.0

cd my-first-react-app && npm start

A browser window will open and you’ll be greeted with the index page of

CRA apps:

Figure 2: The index page of CRA apps

There’s a lot going on under the hood of this app, but the most important

thing for you to know is that the entire React app code can be found in

src/ directory, and it’s hooked into the public/index.html file.

Nathan Sebhastian 10

Digesting React v1.0.0

If you want to learn about the configuration that’s been setup by Create

React App, you can read about my article Step by step React configura-

tion from scratch. That’s exactly what Create React App has saved you

from.

Installing React Developer Tools

React has a Developer Tool that allows you to inspect your React code at

runtime from the browser. This is very useful to see changes in your Re-

act code as you’ll see in the following chapters. To use it, you only need

to download the right package for your environment:

• Chrome extension

• Firefox extension

• Standalone app (Safari, React Native, etc)

Opera users can enable Chrome extensions and then install the Chrome

extension.

I recommend you use Chrome or Firefox extension, since they are easier

to work with compared to the standalone version. To bring up the Devel-

oper Tool, simply open your browser developer tool and a new ‘Compo-

nents’ and ‘Profiler’ tabs will appear on sites using React:

Nathan Sebhastian 11

https://sebhastian.com/react-configuration-tutorial/
https://sebhastian.com/react-configuration-tutorial/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://addons.mozilla.org/firefox/addon/react-devtools/
https://github.com/facebook/react-devtools/blob/master/packages/react-devtools/README.md
https://addons.opera.com/extensions/details/download-chrome-extension-9/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi

Digesting React v1.0.0

Figure 3: React dev tools in action

Similar to how you can inspect CSS in a regular HTML elements, you

can inspect the state and props of React component using the developer

tool. I will explain how you can use it later. Let’s start learning React

core concepts for now.

Nathan Sebhastian 12

Digesting React v1.0.0

Part 1: React Core Concepts

This part will show you the building blocks of React applications. It will

help you learn the idea of a component and how it can be used to split

your application UI into small, manageable pieces.

You will also learn how your components know what to display on the

screen based on the data you feed into it in the form of props and state.

To build a fully functional web application, you’ll need more than one

component, so you’re going to learn how to assemble multiple com-

ponents into a single application.

Next, you will learn about the lifecycle of a React class component, and

how you can execute your code based on what lifecycle status your com-

ponent is in.

Finally, you will learn how to handle events such as a button click with

React. You will end part 1 with building a simple application that demon-

strates how all these theories came together.

This part will focus on building components using JavaScript class

syntax. You will learn about the function syntax in part two.

Nathan Sebhastian 13

Digesting React v1.0.0

Introducing React components

A component in React is a single independent unit of a user interface.

What you write inside a component will determine what should appear on

the browser screen at a given time. Each component in React must return

at least one UI element in order to run properly.

You can create a React component using both JavaScript class and

function syntax.

Here’s how you declare a class component in React:

import React from 'react';

class MainComponent extends React.Component {
render(){

return <h1> Hello World </h1>
}

}

A class component must always contain a render() function with a

return statement or it will throw an error.

And here’s how you declare a function component:

import React from 'react';

function MainComponent(){
return <h1> Hello World </h1>

}

Nathan Sebhastian 14

Digesting React v1.0.0

Just like class component, a function component must always have a

return statement, but you don’t need to create a render() function

with it.

When you want a component to render nothing, you can return a null

or false instead of an element.

import React from 'react';

function MainComponent(){
return null

}

//or

class MainComponent extends React.Component {
render(){

return false
}

}

Since React is a JavaScript library, all React component code goes under

the .js file extension. You might find some public code use .jsx ex-

tension, but most compilers treat them as the same, so it’s better to use

.js extension because it’s the universal JavaScript code format.

Returning multiple elements

A component must always return a single element. When you need to re-

turn multiple elements, you need to wrap all of it in a single element like

a <div> :

Nathan Sebhastian 15

Digesting React v1.0.0

import React from 'react';

class MainComponent extends React.Component {
render(){

return (
<div>

<h1>Hello World!</h1>
<h2>Learning to code with React</h2>

</div>
)

}
}

But this will make your application renders extra <div> nodes into the

browser. To avoid cluttering your application, you can render an empty

tag:

import React from 'react';

class MainComponent extends React.Component {
render(){

return (
<>

<h1>Hello World!</h1>
<h2>Learning to code with React</h2>

</>
)

}
}

With this, you won’t render any extra nodes. You can do the same with

React function components.

Nathan Sebhastian 16

Digesting React v1.0.0

Rendering to the screen

A React component needs to be rendered into the screen by using the

ReactDOM.render() function which takes two arguments: the compo-

nent you want to render and the containing HTML element to render

the component into. This means that you need to have an HTML file

in your React project, or React won’t know where to render the compo-

nent.Usually, a very basic HTML document with a div is enough:

<div id="root"></div>

Next, you render the component into the div . Notice how ReactDOM

is imported from react-dom package in the example below:

import React from "react";
import ReactDOM from "react-dom";

class MainComponent extends React.Component {
render(){
return <h1>Hello World</h1>

}
}

ReactDOM.render(
<MainComponent />,
document.querySelector("#root")

)

The first argument is the <MainComponent> and the second argument is

the <div> element with id “root”.

Nathan Sebhastian 17

Digesting React v1.0.0

Here’s a render example in Code Sandbox that you can tweak around

with.

Writing comments in React components

Writing comments in React components can be done just like how you

comment in regular JavaScript classes and functions. You can use the

double forward-slash syntax // to comment any code:

class MainComponent extends React.Component {
render(){
// const name = "John"
// const age = 28
return <h1>Hello World</h1>

}
}

Or you can use the forward-slash and asterisk format /* */ like this:

class MainComponent extends React.Component {
render(){
/*
const name = "John"
const age = 28
*/
return <h1>Hello World</h1>

}
}

Generally, the forward-slash and asterisk format for comments is used for

writing real comments like license and other documentation for developers

to read instead of commenting out code:

Nathan Sebhastian 18

https://codesandbox.io/s/rendering-react-component-yt1vx?file=/src/index.js

Digesting React v1.0.0

/** @license React v16.13.1
* react.development.js
*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/

But there is no strict rule that says you can’t use it for commenting out

code too.

Your first exercise

It’s time to create your first React application. Open a terminal in your

computer and create a new React application with Create React App.

Let’s name this app my-first-react-app :

npx create-react-app my-first-react-app

Move into the folder and run the application with npm start :

cd my-first-react-app && npm start

Once the application is loaded into the browser, open your application

with a code editor. Inside, you will see both src/ and public/ fold-

ers. The src/ folder is where the code responsible for rendering your

Nathan Sebhastian 19

Digesting React v1.0.0

application. Open the file App.js and you’ll see the component that

gets rendered by index.js .

Your assignment is very simple:

1. Change the text Edit <code>src/App.js</code> and save to reload

into Hello World from React!

2. Remove the anchor element “Learn React” from the screen

You might see some unfamiliar syntax inside the return statement.

Don’t worry about it, I will explain in the next chapter.

Once you make the changes, save the file and return to the browser. The

script from Create React App will automatically refresh the browser and

display the changes for you. Great job!

Next, you’re going to learn about JSX, the template language of React.

Nathan Sebhastian 20

Digesting React v1.0.0

JSX: The template language of React

In the previous chapter, you’ve learned that a component must always

have a return statement that contains elements to render on the

screen:

class MainComponent extends React.Component {
render(){

return <h1> Hello World </h1>
}

}

The tag <h1> looks like a regular HTML tag, but it’s actually a special

template language included in React called JSX.

JSX is an extension of JavaScript that produces JavaScript powered React

elements. It can be assigned to JavaScript variable and can be returned

from function calls. For example:

class MainComponent extends React.Component {
render(){

const element = <h1> Hello World! </h1>
return element

}
}

The example above is a valid JSX code.

Nathan Sebhastian 21

Digesting React v1.0.0

Adding class attribute

Just like ordinary HTML, JSX can use class attribute with the

className keyword (because the keyword class is reserved by

JavaScript.)

const App = <h1 className='text-lowercase'>Hello World!</h1>;

Writing comments inside React JSX

Commenting inside React JSX syntax is a bit confusing because while

JSX gets rendered just like normal HTML by the browser, JSX is actually

an enhanced JavaScript that allows you to write HTML in React.

You can’t write comments as you might do in HTML and XML with

<!-- --> syntax. The following example will throw Unexpected token

error:

export default function App() {
return (

<div>
<h1>Hello World~ </h1>
<!-- <p>My name is Bob</p> -->
<p>Nice to meet you!</p>

</div>
);

}

To write comments in JSX, you need to use JavaScript’s forward-slash

and asterisk syntax, enclosed inside a curly brace {/* comment */} .

Nathan Sebhastian 22

Digesting React v1.0.0

Here’s an example:

export default function App() {
return (

<div>
<h1>Commenting in React and JSX~ </h1>
{/* <p>My name is Bob</p> */ }
<p>Nice to meet you!</p>

</div>
);

}

And here’s for multiple lines of JSX:

export default function App() {
return (

<div>
{/* <h1>Commenting in React and JSX~ </h1>
<p>My name is Bob</p>
<p>Nice to meet you!</p> */ }

</div>
);

}

It may seem very annoying that you need to remember two different ways

of commenting when writing React code. But don’t worry!

Most modern IDEs like VSCode and CodeSandbox already know about

this issue. They will write the right comment syntax for you automati-

cally when you press on the comment shortcut CTRL+/ or command+/

for macOS.

Nathan Sebhastian 23

https://sebhastian.com/vscode-guide
https://codesandbox.io/s/react-jsx-comments-bs3ir

Digesting React v1.0.0

Using JavaScript inside JSX

You can embed JavaScript expression inside the element by using curly

brackets {} :

const lowercaseClass = 'text-lowercase';
const text = 'Hello World!';
const App = <h1 className={lowercaseClass}>{text}</h1>;

This is what makes React element distinct from HTML element. You

can’t embed JavaScript directly by using curly braces in HTML.

Instead of creating a whole new templating language, you just need to use

JavaScript functions to control what is being displayed on the screen.

For example, let’s say you have an array of users that you’d like to show:

const users = [
{ id: 1, name: 'Nathan', role: 'Web Developer' },
{ id: 2, name: 'John', role: 'Web Designer' },
{ id: 3, name: 'Jane', role: 'Team Leader' },

]

You can use the map() function to loop over the array:

import React from "react"

function App() {
const users = [

{ id: 1, name: 'Nathan', role: 'Web Developer' },
{ id: 2, name: 'John', role: 'Web Designer' },
{ id: 3, name: 'Jane', role: 'Team Leader' },

]

Nathan Sebhastian 24

Digesting React v1.0.0

return (
<>

<p>The currently active users list:</p>

{

users.map(function(user){
// returns Nathan, then John, then Jane
return (

 {user.name} as the {user.role}
)

})
}

</>
)

}

Inside React, you don’t need to store the return value of the map func-

tion in a variable. The example above will return a list element for each

array value into the component.

While the above code is already complete, React will trigger a warning

that you need to put “key” prop in each child of a list (the element that

you return from map function):

Nathan Sebhastian 25

Digesting React v1.0.0

Figure 4: React needs a key inside each child

The “key” prop is a special prop that React will use to determine which

child element have been changed, added, or removed from the list. you

won’t use it actively in any part of your array rendering code, but since

React needs the props, then let’s give it.

It is recommended that you put the unique identifier of your data as the

key value. In the example above, you can put the id of each user as the

key of each element:

return (
<li key={user.id}>

{user.name} as the {user.role}

)

When you don’t have any unique identifiers for your list, you may use the

array index as the last resort:

Nathan Sebhastian 26

https://reactjs.org/docs/lists-and-keys.html#keys

Digesting React v1.0.0

{
users.map(function(user, index){

return (
<li key={index}>

{user.name} as the {user.role}

)
})

}

Now that you know how flexible and powerful JSX is, let’s learn about

composing components next.

Nathan Sebhastian 27

Digesting React v1.0.0

Assembling multiple components as one

Up until this point, you’ve only rendered a single component into the

browser. But applications build using React can comprise of tens and

hundreds of components. Composing or assembling components is

the process of forming the user interface by using loosely coupled compo-

nents in a top-down approach.

It’s kind of like making a robot out of lego blocks, as I will show you in

the following demo:

class ParentComponent extends React.Component {
render(){

return (
<>

<UserComponent />
<ProfileComponent />
<FeedComponent />

</>
)

}
}

class UserComponent extends React.Component {
render(){

return <h1> User Component </h1>
}

}

class ProfileComponent extends React.Component {
render(){

return <h1> Profile Component </h1>
}

}

class FeedComponent extends React.Component {
render(){

Nathan Sebhastian 28

Digesting React v1.0.0

return <h1> Feed Component</h1>
}

}

From the example above, you can see how the <ParentComponent> ren-

ders three children components:

• <UserComponent>

• <ProfileComponent>

• <FeedComponent>

Both class components and function components can compose components

this way. You can even render a class component inside a function compo-

nent and vice versa.

The composition of many components will form a single tree of React

components, and a single component will be rendered into the DOM us-

ing ReactDOM.render() :

Nathan Sebhastian 29

Digesting React v1.0.0

Figure 5: React tree of components

By composing multiple components, you can split the user interface into

independent, reusable pieces, and develop each piece in isolation.

Nathan Sebhastian 30

Digesting React v1.0.0

Custom functions and this keyword

You can create custom functions to run inside a component by declaring

the function name without the function keyword. Here’s an example:

import React from 'react';

class MainComponent extends React.Component {

formatName(firstName, lastName) {
return firstName + ' ' + lastName;

}

render(){
const firstName = "Bruce"
const lastName = "The Batman"
return (

<>
<h1>Hello World!</h1>
<h2>I'm {this.formatName(firstName, lastName)}</h2>

</>
)

}
}

In the example above, the function formatName() is a custom

function that gets called by the render() function using the

this.formatName() syntax. The this keyword refers to

the JavaScript class MainComponent which owns the function

formatName() .

In the following chapters, you will find that React class components will

use this keyword to access properties owned by the class.

Nathan Sebhastian 31

Digesting React v1.0.0

State and props

In React library, props and states are both means to make a component

more dynamic. Props (or properties) are inputs passed down from a par-

ent component to its child component. On the other hand, states are vari-

ables defined and managed by the component.

For example, let’s say we have a that calls a :

class ParentComponent extends React.Component {
return <ChildComponent />

}

You can pass a prop from ParentComponent into ChildComponent by

adding new attributes after the component name. For example, the

name prop with value John is passed to ChildComponent below:

class ParentComponent extends React.Component {
return <ChildComponent name="John" />

}

After that, the child component will accept assign the props into its own

this.props object. What to do with the prop being passed down to the

child is of no concern to the parent component. You can simply output

the name prop like this:

Nathan Sebhastian 32

Digesting React v1.0.0

class ChildComponent extends React.Component {
render(){

return <p> Hello World! my name is {this.props.name}</p>
}

}

Passing down multiple props

You can pass as many props as you want into a single child component,

just write the props next to the previous. Here’s an example:

class ParentComponent extends React.Component {
render(){

return (
<ChildComponent

name="John"
Age={29}
isMale={true}
hobbies={["read books", "drink coffee"]}
occupation="Software Engineer"

/>
);

}
}

It will all be passed accordingly into the ChildComponent’s this.props

object.

Also please remember: you need to pass either a string or a

JavaScript expression inside curly brackets as the value of props.

This is because your component call is in JSX syntax, and you need to

use curly brackets to write an expression.

Nathan Sebhastian 33

Digesting React v1.0.0

Props are immutable

Meaning that a prop’s value can’t be changed no matter what happens.

The following example will still output the value passed into it instead of

“Mark”:

class ChildComponent extends React.Component {
render(){

this.props.name = "Mark";
return <p> Hello World! my name is {this.props.name}</p>

}
}

But what if you need variables that might change later? This is where

state comes in. States are arbitrary data that you can define, but they are

initialized and managed by a component. Here’s how you define a class

component state:

class ParentComponent extends React.Component {
state = {

name: "John"
}

}

The state initialized in the class can be accessed from this.state ob-

ject.

Please note that you mustn’t change the state value by reassigning the

variable. The following code is considered wrong even though it works:

Nathan Sebhastian 34

Digesting React v1.0.0

class ParentComponent extends React.Component {
state = {

name: "John"
}

render() {
this.state.name = "Mark"
return <div>{this.state.name}</div>;

}
}

You need to use the setState function which is inherited from React’s

Component class. You need to pass in an object just like when you de-

clare the initial state:

class ParentComponent extends React.Component {
state = {

name: ""
};

render() {
if (this.state.name === "") {

this.setState({ name: "Mark" });
}
return <div>{this.state.name}</div>;

}
}

Also, never call on the setState without a condition since it will

cause an infinite loop. The following code will throw an error:

class ParentComponent extends React.Component {
state = {

name: ""
};

Nathan Sebhastian 35

Digesting React v1.0.0

render() {
this.setState({ name: "Mark" });
return <div>{this.state.name}</div>;

}
}

Binding a custom function

You can pass state into any children component, but if you want to up-

date the state from a child component, you need to create a custom func-

tion in the parent component and pass it down to the child component:

class ParentComponent extends React.Component {
state = {

name: "John"
};

setName(name) {
this.setState({ name: name });

}

render() {
return (

<ChildComponent
name={this.state.name}
setName={this.setName.bind(this)}

/>
);

}
}

The bind keyword used inside the setName props is needed be-

cause when you pass the function to other components, the function

Nathan Sebhastian 36

Digesting React v1.0.0

will be called in a different context (in ChildComponent instead of

ParentComponent)

When a child component needs the state to change, you can do so by call-

ing on the setName function. In the following example, I put a button

to change the value of name state when it gets clicked:

class ChildComponent extends React.Component {
render() {

return (
<>

<p> Hello World! my name is {this.props.name}</p>
<button

onClick={() => this.props.setName("Mark")}>
Change name

</button>
</>

);
}

}

Notice how the <button> above has an onClick event attribute.

You will explore that in the next chapter.

Using React DevTools to inspect state and props

To help ease your development, you can use React DevTools that you’ve

installed previously to inspect the current state and props value of your

components. Head over into the components tab and click on one of the

Nathan Sebhastian 37

Digesting React v1.0.0

components. Here’s an example of ChildComponent detail in the in-

spector:

Figure 6: DevTools component inspector

When you click on the button, the name prop value will change ac-

cordingly. You can inspect the ParentComponent to view the value of

state in it. This will be useful as you code your application in the exercise

projects later.

Nathan Sebhastian 38

Digesting React v1.0.0

Conclusion

You’ve just learned the difference between props and state in React. Both

features are simply arbitrary variables that you can use to make your Re-

act components more dynamic. In most cases, states are initialized at top-

level components and passed down as props into children components.

When you need to change the prop value, the child component can send

a signal — usually function call when a button is clicked or something

similar — to the parent component to change the state. This will make

the props value being passed down from the parent component to child

component changes.

The components will then render the user interface accordingly.

Nathan Sebhastian 39

Digesting React v1.0.0

React event handlers

React has an internal event system that gets triggered every time a cer-

tain action is taken by the user. For example, an event can be triggered

when you click on a button with the onClick prop:

class LogButton extends React.Component {
handleClick = (event) => {

console.log("Hello World!");
console.log(event);

};

render() {
return (

<button onClick={this.handleClick}>
Click me

</button>
);

}
}

When you click on the button above, the event variable will be logged

as a SyntheticBaseEvent object in your console:

Figure 7: React’s SyntheticBaseEvent log

Nathan Sebhastian 40

Digesting React v1.0.0

The event argument passed into handleClick is React’s own Syn-

thetic event. It will always get send into your event handler function.

React’s Synthetic events are basically wrappers around the native DOM

events. They are helper functions created to make sure the events have

consistent properties across different browsers.

These specific events are baked into React library to help you in creating

the proper responses to a user’s actions. General use cases where you need

to make use of these event handlers include listening to user inputs and

storing form input data in React’s state.

Storing form input with onChange event handler

The onChange event handler is a prop that you can pass into JSX’s in-

put elements. In React, onChange is used to handle user input in real-

time.

If you want to build a form in React, you need to use this event to track

the value of input elements.

Here’s how you add the onChange handler to an input:

import React from "react"

class App extends React.Component {
render(){

return (
<input

Nathan Sebhastian 41

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events

Digesting React v1.0.0

type="text"
name="firstName"
onChange={ (event) => console.log("onchange is triggered") } />

)
}

}

Now whenever you type something into the input box, React will trigger

the function that we passed into the onChange prop.

In regular HTML, form elements such as <input> and <textarea>

usually maintain their own value:

<input id="name" type="text">

Which you can retrieve by using the document selector:

var name = document.getElementById("name").value;

In React however, it is encouraged for developers to store input values in

the component’s state object. This way, React component that renders

the form elements will also control what happens on subsequent user in-

puts. First, you create a state for the input:

import React from "react"

class App extends React.Component {
state = {

name: ''
}

}

Nathan Sebhastian 42

Digesting React v1.0.0

Then, you create an input element and call the setState function to

update the name state. Every time the onChange event is triggered,

React will pass the event argument into the function that you define

inside the prop:

import React from "react"

class App extends React.Component {
state = {

name: ''
}

render(){
return (

<input
type="text"
name="firstName"
onChange={ (event) => this.setState({ name: event.target.value}) } />

)
}

}

Finally, you use the value of name state and put it inside the input’s

value prop:

return (
<input

type="text"
name="firstName"
onChange={

(event) => this.setState({ name: event.target.value})
}
value={this.state.name} />

)

You can retrieve input value in event.target.value and input name

Nathan Sebhastian 43

Digesting React v1.0.0

in event.target.name . You can also separate the onChange handler

into its own function.

The event object is commonly shortened as e

import React, { useState } from "react"

class App extends React.Component {
state = {

name: ''
}

handleChange(e) {
this.setState({ name: e.target.value});

}

render(){
return (

<input
type="text"
name="firstName"
onChange={ this.handleChange.bind(this) }
value={this.state.name} />

)
}

}

The bind keyword is used when you call on the handleChange func-

tion so that you can call on this.setState inside it (this will still

refers to App class instead of handleChange function)

This pattern of using React’s onChange event and the component state

will encourage developers to use state as the “single source of truth”. In-

stead of using Regular JavaScript to retrieve input values, you retrieve

them from the state.

Nathan Sebhastian 44

Digesting React v1.0.0

Preventing default event behavior

Since Synthetic events are just wrappers, the internal default behavior

of the DOM object will still be triggered. One problem with the native

DOM events is that it sometimes triggers a behavior that you don’t need.

For example, a form’s submit button in React will always trigger a

browser refresh to submit the data into a backend system. This is bad

because the behavior you defined in the onSubmit event function will

be ignored by the browser. Try the following example:

import React from "react";

class App extends React.Component {
state = {

name: ''
}

handleSubmit(event) {
console.log(this.state.name);

};

render(){
return (

<form onSubmit={this.handleSubmit}>
<label>

Name:
<input

type="text"
value={this.state.name}
onChange={

(event) => this.setState({name: event.target.value})
}

/>
</label>
<input type="submit" value="Submit" />

</form>

Nathan Sebhastian 45

Digesting React v1.0.0

);
}

}

Because of the default DOM event behavior, the handleSubmit func-

tion will be ignored and your log will not get written on the console.

This may be good in the past where the entire form validation and pro-

cessing happens in the backend, but modern web applications tend to run

the form validation process on the client-side in order to save time and

bandwidth. To do so, you need to run your own defined behavior.

To cancel the native behavior of the submit button, you need to use Re-

act’s event.preventDefault() function:

handleSubmit(event) {
event.preventDefault();
console.log(name);

};

And that’s all you need. Now the default event behavior will be canceled,

and any code you write inside handleSubmit will be run by the browser.

You can also write the preventDefault() function on the last line of

your function:

Nathan Sebhastian 46

Digesting React v1.0.0

handleSubmit(event) {
console.log(name);
console.log("Thanks for submitting the form!");
event.preventDefault();

};

But for collaboration and debugging purposes, it’s always better to write

the prevent function just below your function declaration. That way

you won’t cause a bug by forgetting to put the prevent function too.

Nathan Sebhastian 47

Digesting React v1.0.0

React component’s lifecycle methods

All React components must have a render method, which returns some

element that will be inserted into the DOM. Indeed, ReactDOM.render

is called on a pure HTML element, which in most of our example so far,

use the <div> tag with id root as its entry point.

That’s why when we do this:

class sampleComponent extends React.Component {
render() {

return (
<h1>Hello World!</h1>

);
}

}

ReactDOM.render(
<sampleComponent />,
document.getElementById('root')

);

The <h1> element will be added into the DOM element with id root :

<div id='root'>
<h1>Hello World</h1>

</div>

Even though you can’t see it in the browser, there’s a fraction of time be-

fore React component render or insert this <h1> element into the

Nathan Sebhastian 48

Digesting React v1.0.0

browser and after it, and in that small fraction of time, you can run spe-

cial functions designed to exploit that time.

This is what lifecycle functions in a React component do: it executes at a

certain time before or after a component is rendered to the browser.

Figure 8: The lifecycle graph

When a component is first inserted into the DOM (or the root ele-

ment), it will run the constructor method. At this point, nothing is

happening in the browser.

Then React will run the component render method, inserting the JSX

Nathan Sebhastian 49

Digesting React v1.0.0

you write into the DOM. After render is finished, it will immediately

run the componentDidMount function.

When you call on setState , the render function will be called again

after state is changed, with componentDidUpdate function immediately

run after it .

componentWillUnmount function will run before the component ren-

dered element is removed from the DOM.

The theory might seem complex, but as you will see in the following chap-

ters, lifecycle functions are situational code, and they are used only for

specific use cases.

The constructor function

The constructor function is run on the initialization of a React com-

ponent. It is widely used as the place where state is initialized:

class sampleComponent extends React.Component {
constructor(props) {

super(props);
this.state = {

number : 0
}

}
}

The function super will call on the parent constructor (specifically,

the React.Component constructor) so that you can call on this :

Nathan Sebhastian 50

Digesting React v1.0.0

class sampleComponent extends React.Component {
constructor(props) {

// this will cause error
this.state = {

number : 0
}
super(props);

}
}

The props are being passed into super so that you can call on

this.props on the constructor. If you’re not using props in the

constructor at all, you can omit it.

You might notice that on the previous chapters, you can also initiate state

outside of the constructor:

class sampleComponent extends React.Component {
state = {

number: 0
}

}

Both are valid state declaration, but the constructor style is widely

adopted as the conventional style to class components, so you will find

most React code use it.

The bottom line for constructor function — initialize your state

there.

Nathan Sebhastian 51

Digesting React v1.0.0

render function

You have seen this function in previous chapters, so it must be familiar

for you. The render function is used to write the actual JSX elements,

which is returned to React and hooked into the DOM tree.

Before returning JSX, you can write regular JavaScript syntax for opera-

tion such as getting state value, and embed it into the JSX:

render() {
const { name, role } = this.state;
return (

<div>My name is {name} and I'm a {role}</div>
)

}

The componentDidMount function

The most common use of componentDidMount function is to load data

from backend services or API. Because componentDidMount is called

after render is finished, it ensures that whatever component manipula-

tion you do next, like setState from fetched data, will actually update

state from its initial value.

A data request to backend services might resolve faster than the compo-

nent is inserted into the DOM, and if it did, you will do a setState

faster than the render method finished. That will cause React to give

Nathan Sebhastian 52

Digesting React v1.0.0

you a warning. The most common use of componentDidMount looks

like this:

class sampleComponent extends React.Component {

componentDidMount() {
this.fetchData().then(response => {

this.setState({
data: response.data

});
});

}

fetchData = () => {
// do a fetch here and return something

}
}

But componentDidMount is limited to running only once in a compo-

nent lifecycle. To address this limit, let’s learn about the next lifecycle

function.

The componentDidUpdate function

Since componentDidMount is run only once in a component life-

time, it can’t be used to fetch data in response to state change. Enter

componentDidUpdate function. This function is always run in response

to changes in the component, remember the diagram again:

Nathan Sebhastian 53

Digesting React v1.0.0

Figure 9: componentDidUpdate graph

An easy example would be to log the new state after a re-render.

class SampleDidUpdate extends React.Component {
constructor(props) {

super(props);
this.state = {

number: 0
};

}

incrementState = () => {
const { number } = this.state;
this.setState({

number: number + 1
});

};

decrementState = () => {

Nathan Sebhastian 54

Digesting React v1.0.0

const { number } = this.state;
this.setState({

number: number - 1
});

};

componentDidMount() {
const { number } = this.state;
console.log(`The current number is ${number}`);

}

componentDidUpdate() {
const { number } = this.state;
console.log(`The current number is ${number}`);

}

render() {
const { number } = this.state;
return (

<>
<div> The current number is {number}</div>
<button onClick={this.incrementState}>Add number</button>
<button onClick={this.decrementState}>Subtract number</button>

</>
);

}
}

A demo is available here. Notice how didMount and didUpdate is

identical in everything but name. Since user can change the keyword after

the component did mount into the DOM, subsequent request won’t be run

by componentDidMount function. Instead, componentDidUpdate will

“react” in response to the changes after render function is finished.

Nathan Sebhastian 55

https://codesandbox.io/s/5304jjlqnx

Digesting React v1.0.0

The componentWillUnmount function

The final function componentWillUnmount will run when the com-

ponent is about to be removed from the DOM. This is used to cleanup

things that would be left behind by the component.

To try out this function, let’s create two child component and one parent

component.

class ChildComponentOne extends React.Component {
componentWillUnmount() {

console.log("Component One will be removed");
}

render() {
return <div>Component One</div>;

}
}

class ChildComponentTwo extends React.Component {
componentWillUnmount() {

console.log("Component Two will be removed");
}

render() {
return <div>Component Two</div>;

}
}

This child components will do a simple div render with componen-

tWillUnmount function that logs a text into the console. Then the parent

component will render one of them based on the current state it’s in.

Nathan Sebhastian 56

Digesting React v1.0.0

class ParentComponent extends React.Component {
constructor(props) {

super(props);
this.state = {

number: 0
};

}

switchState = () => {
const { number } = this.state;
this.setState({

number: number === 0 ? 1 : 0
});

};

render() {
const { number } = this.state;
let component = number ? <ChildComponentOne /> : <ChildComponentTwo />;
return (

<>
{component}
<button onClick={this.switchState}>Switch</button>

</>
);

}
}

When you click on the Switch button, the component that will be re-

moved from the DOM will log a message, then leave and be replaced with

the new component. You can try it here.

When to use it? It’s actually very situational, and the best use of

componentWillUnmount is to shut down some external service listener

your component is subscribed into.

Nathan Sebhastian 57

https://codesandbox.io/s/xv0v0jjk5o

Digesting React v1.0.0

Conclusion

React’s lifecycle methods are used for running codes that needs to be au-

tomatically run when the component is created, added, and removed from

the DOM.

The lifecycle methods bring more control over what happens at each spe-

cific time during your component lifetime, from its creation to its destruc-

tion, allowing you to create dynamic applications in the process.

Nathan Sebhastian 58

Digesting React v1.0.0

Writing CSS for React Components

There are four different ways to write CSS for React components. Let’s

learn what they are and which one you should start with.

Inline styling

React components are composed of JSX elements. But just because you’re

not writing regular HTML elements doesn’t mean you can’t use the old

inline style method.

The only difference with JSX is that inline styles must be written as an

object instead of a string.

Here is a simple example:

function App() {
return (

<h1 style={{ color: "red" }}>Hello World</h1>
);

}

In the style attribute above, the first set of curly brackets will tell your

JSX parser that the content between the brackets is JavaScript (and not a

string). The second set of curly bracket will initialize a JavaScript object.

Nathan Sebhastian 59

Digesting React v1.0.0

Style property names that have more than one word are written in camel-

Case instead of using the traditional hyphenated style. For example, the

usual text-align property must be written as textAlign in JSX:

function App() {
return (

<h1 style={{ textAlign: "center" }}>Hello World</h1>
);

}

Because the style attribute is an object, you can also separate the style by

writing it as a constant. This way, you can reuse it on other elements as

needed:

const pStyle = {
fontSize: '16px',
color: 'blue'

}

export default function App() {
return (

<p style={pStyle}>The weather is sunny today.</p>
);

}

If you need to extend your paragraph style further down the line, you can

use the object spread operator. This will let you add inline styles to your

already-declared style object:

Nathan Sebhastian 60

Digesting React v1.0.0

const pStyle = {
fontSize: "16px",
color: "blue"

};

export default function App() {
return (

<>
<p style={pStyle}>

The weather has a small chance of rain today.
</p>
<p style={{ ...pStyle, color: "green", textAlign: "right" }}>

When you go to work, bring your umbrella with you!
</p>

</>
);

}

Inline styles are the most basic example of a CSS in JS styling technique.

One of the benefits in using the inline style approach is that you will have

a simple component-focused styling technique. By using an object for

styling, you can extend your style by spreading the object. Then you can

add more style properties to it if you want.

But in a big and complex project where you have a hundreds of React

components to manage, this might not be the best choice for you.

You can’t specify pseudo-classes using inline styles. That means :hover

, :focus , :active , or :visited go out the window rather than

the component.

Also, you can’t specify media queries for responsive styling. Let’s consider

another way to style your React app.

Nathan Sebhastian 61

Digesting React v1.0.0

CSS stylesheets

When you build a React application using Create React App, you will

automatically use webpack to handle asset importing and processing.

The great thing about webpack is that, since it handles your assets, you

can also use the JavaScript import syntax to import a .css file to

your JavaScript file. Just create a regular CSS file in your project folder:

/* style.css */
.paragraph-text {

font-size: 16px;
color: 'blue';

}

And you can import the CSS file and use the class name in JSX elements

that you want to style, like this:

import React, { Component } from 'react';
import './style.css';

function App() {
return (

<>
<p className="paragraph-text">

The weather is sunny today.
</p>

</>
);

}

This way, the CSS will be separated from your JavaScript files, and you

can just write CSS syntax just as usual.

Nathan Sebhastian 62

Digesting React v1.0.0

You can even include a CSS framework such as Bootstrap in your React

app using this approach. All you need to is import the CSS file into your

root component.

This method will enable you to use all of the CSS features, including

pseudo-classes and media queries. But the drawback of using a stylesheet

is that your style won’t be localized to your component.

All CSS selectors have the same global scope. This means one selector can

have unwanted side effects, and break other visual elements of your app.

Just like inline styles, using stylesheets still leaves you with the problem of

maintaining and updating CSS in a big project.

CSS Modules

A CSS module is a regular CSS file with all of its class and animation

names scoped locally by default.

Each React component will have its own CSS file, and you need to import

the required CSS files into your component.

In order to let React know you’re using CSS modules, name your CSS file

using the [name].module.css convention.

Here’s an example:

Nathan Sebhastian 63

https://create-react-app.dev/docs/adding-bootstrap/
https://create-react-app.dev/docs/adding-a-css-modules-stylesheet/

Digesting React v1.0.0

/* App.module.css */
.BlueParagraph {

color: blue;
text-align: left;

}
.GreenParagraph {

color: green;
text-align: right;

}

Then import it to your component file:

import React from "react";
import styles from "./App.module.css";

function App() {
return (

<>
<p className={styles.BlueParagraph}>

The weather is sunny today.
</p>
<p className={styles.GreenParagraph}>

Still, don't forget to bring your umbrella!
</p>

</>
)

}

When you build your app, webpack will automatically look for CSS files

that have the .module.css name. Webpack will take those class names

and map them to a new, generated localized name.

Here is the sandbox for the above example. If you inspect the blue

paragraph, you’ll see that the element class is transformed into

_src_App_module__BlueParagraph .

Nathan Sebhastian 64

https://codesandbox.io/s/css-modules-example-eqh5o

Digesting React v1.0.0

CSS Modules ensures that your CSS syntax is scoped locally.

Another advantage of using CSS Modules is that you can compose a new

class by inheriting from other classes that you’ve written. This way, you’ll

be able to reuse CSS code that you’ve written previously, like this:

.MediumParagraph {
font-size: 20px;

}
.BlueParagraph {

composes: MediumParagraph;
color: blue;
text-align: left;

}
.GreenParagraph {

composes: MediumParagraph;
color: green;
text-align: right;

}

Finally, in order to write normal style with a global scope, you can use

the :global selector in front of your class name:

:global .HeaderParagraph {
font-size: 30px;
text-transform: uppercase;

}

You can then reference the global scoped style like a normal class in your

JavaScript file:

Nathan Sebhastian 65

Digesting React v1.0.0

<p className="HeaderParagraph">Weather Forecast</p>

Styled components

Styled Components is a library designed for React and React Native. It

combines both the CSS in JS and the CSS Modules methods for styling

your components.

Let me show you an example:

import React from "react";
import styled from "styled-components";

// Create a Title component
// that renders an <h1> tag with some styles
const Title = styled.h1`

font-size: 1.5em;
text-align: center;
color: palevioletred;

`;

function App() {
return <Title>Hello World!</Title>;

}

When you write your style, you’re actually creating a React component

with your style attached to it. The funny looking syntax of styled.h1 fol-

lowed by backtick is made possible by utilizing JavaScript’s tagged tem-

plate literals.

Styled Components were created to tackle the following problems:

Nathan Sebhastian 66

Digesting React v1.0.0

• Automatic critical CSS: Styled-components keep track of which

components are rendered on a page, and injects their styles and

nothing else automatically. Combined with code splitting, this means

your users load the least amount of code necessary.

• No class name bugs: Styled-components generate unique class

names for your styles. You never have to worry about duplication,

overlap, or misspellings.

• Easier deletion of CSS: It can be hard to know whether a

class name is already used somewhere in your codebase. Styled-

components makes it obvious, as every bit of styling is tied to a

specific component. If the component is unused (which tooling can

detect) and gets deleted, all of its styles get deleted with it.

• Simple dynamic styling: Adapting the styling of a component

based on its props or a global theme is simple and intuitive, without

you having to manually manage dozens of classes.

• Painless maintenance: You never have to hunt across different

files to find the styling affecting your component, so maintenance is a

piece of cake no matter how big your codebase is.

• Automatic vendor prefixing: Write your CSS to the current

standard and let styled-components handle the rest.

You get all of these benefits while still writing the same CSS you know

and love – just bound to individual components.

Nathan Sebhastian 67

Digesting React v1.0.0

If you’d like to learn more about styled components, you can visit the

documentation and see more examples.

Which one should you start with?

As you will practice building some React projects in the next chapter, I

recommend you to go with CSS stylesheets method because it’s proba-

bly most familiar to you.

CSS Modules and Styled Components are better methods to handle com-

plex front-end styling, but since these are practice projects, you don’t

need to think about scaling your CSS for large React projects.

Nathan Sebhastian 68

https://styled-components.com/docs

Digesting React v1.0.0

Thank You For Reading Digetsting React Preview

If you decided to learn more about React and support my effort in making

coding skills available to everyone, please consider purchasing a copy of

this book at https://sebhastian.com/digesting-react/

It includes the rest of the chapters along with the practical projects.

For any question, you can email me at nathan@sebhastian.com

Always remember to improve your skills everyday :)

Regards,

Nathan Sebhastian the React Geek

Nathan Sebhastian 69

https://sebhastian.com/digesting-react/

	Foreword
	Introduction to React
	It's minimalist
	It has small learning curve
	It's unopinionated
	Strong community support

	Setting up your local computer environment
	Installing VSCode
	Installing Node.js
	Installing Create React App
	Installing React Developer Tools

	Part 1: React Core Concepts
	Introducing React components
	Returning multiple elements
	Rendering to the screen
	Writing comments in React components
	Your first exercise

	JSX: The template language of React
	Adding class attribute
	Writing comments inside React JSX

	Using JavaScript inside JSX
	Assembling multiple components as one
	Custom functions and this keyword
	State and props
	Passing down multiple props
	Props are immutable
	Binding a custom function

	Using React DevTools to inspect state and props
	Conclusion

	React event handlers
	Storing form input with onChange event handler
	Preventing default event behavior

	React component's lifecycle methods
	The constructor function
	render function
	The componentDidMount function
	The componentDidUpdate function
	The componentWillUnmount function
	Conclusion

	Writing CSS for React Components
	Inline styling
	CSS stylesheets
	CSS Modules
	Styled components
	Which one should you start with?

	Thank You For Reading Digetsting React Preview

